Theoretical benefit of DBS with PSP and MSA

For those with not enough reading materials(!), neurologyreviews.com is an interesting website.  In the January 2006 News Roundup section of the website, there’s an article about how deep brain stimulation in specific areas could help those with multiple system atrophy or progressive supranuclear palsy.

A short blurb is copied below.

Robin

——————–

www.neurologyreviews.com/jan06/newsroundup.html

Two studies in the November 28, 2005, NeuroReport demonstrated that the pedunculopontine nucleus can be targeted safely and effectively with deep brain stimulation without major surgical risks in patients with Parkinson’s disease. Low frequency (20 to 25 Hz) stimulation of the pedunculopontine nucleus improves postural stability and gait disturbance, including “on-medication” freezing. Furthermore, combined stimulation of the subthalamic nucleus and the pedunculopontine nucleus appears to be more valuable than stimulation of the pedunculopontine nucleus alone. “In theory, even patients with multiple system atrophy or progressive supranuclear palsy could benefit [from this treatment]­in fact, any patient with intractable locomotive and postural akinesia [could benefit],” reported the investigators.

“Hard Choices for Loving People” booklet

Most of us aren’t at the point yet when we are thinking about these things — feeding tubes, CPR, and end-of-life care — but it may be beneficial to review some of these decisions and information now with our loved ones.

There’s a book called “Hard Choices for Loving People:  CPR, Artificial Feeding, Comfort Care, and the Patient with a Life-Threatening Illness” that may assist in the discussion.  You can purchase the book online ($7). At the present time, it looks like you can read it online at no charge.  See:

www.hardchoices.com

The author, Hank Dunn, a healthcare chaplain, definitely has a point of view, which is that feeding tubes are not appropriate for those with dementia.

Note that “Hard Choices” is available in other languages as well, including Spanish and Chinese.

Robin

 

Differentiating CBD syndrome from PSP using brain atrophy patterns

Sharon, one of our group members, sent this to me today.  It’s an article about a study done at UCSF that shows that the patterns of brain atrophy are different in progressive supranuclear palsy and corticobasal degeneration.

Many of your loved ones see neurologists at UCSF. In fact, Sharon’s husband is one of the PSP patients in the study.

The abstract is copied below.

Robin


Archives of Neurology, January 2006, Vol. 63 No. 1

Patterns of brain atrophy that differentiate corticobasal degeneration syndrome from progressive supranuclear palsy.

Boxer AL, Geschwind MD, Belfor N, Gorno-Tempini ML, Schauer GF, Miller BL, Weiner MW, Rosen HJ
Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94143-1207, USA. [email protected]

BACKGROUND: Progressive brain atrophy is associated with the corticobasal degeneration syndrome (CBDS) and progressive supranuclear palsy (PSP). Regional differences in brain atrophy may reflect the clinical features of disease.

OBJECTIVE: To quantify the structural neuroanatomical differences between CBDS and PSP.

DESIGN: A survey of neurologic deficits was conducted in all patients. Voxel-based morphometry was used to quantify structural neuroanatomical differences on magnetic resonance images in each subject group. SETTING: University hospital dementia clinic.

PARTICIPANTS: Fourteen patients who met clinical research criteria for CBD and 15 patients who met clinical research criteria for PSP, who were matched for severity of disease, age, and functional status, and 80 age-matched control subjects.

MAIN OUTCOME MEASURES: Statistically significant differences in regional gray and white matter volume, after multiple comparisons correction, between groups of subjects.

RESULTS: The patients with CBDS displayed an asymmetric (left > right) pattern of brain atrophy that involved the bilateral premotor cortex, superior parietal lobules, and striatum. Progressive supranuclear palsy was associated with atrophy of the midbrain, pons, thalamus, and striatum, with minimal involvement of the frontal cortex. Midbrain structures were more atrophied in PSP than in CBD, whereas dorsal frontal and parietal cortices were more atrophied in CBD than in PSP. The degree of atrophy of the midbrain and pontine tegmentum and the left frontal eye field differentiated the 2 patient groups with 93% accuracy.

CONCLUSIONS: Distinct patterns of brain atrophy exist in CBDS and PSP that can be used to differentiate the 2 diseases. Assessments of brain atrophy in these disorders should be focused on cortical and brainstem ocular motor control areas.

 

PSP and MSA can occasionally co-exist

An article was published earlier this week in a medical journal for neuropathologists.  Here’s the key point of this abstract:

“Based upon the findings in this case, the neuropathologic changes of PSP and MSA are distinct and independent processes, but they can occasionally coexist.”

Obviously these things can ONLY be known through brain donation.  I hope everyone in our group will consider that.

I’ve copied the full abstract below.

Robin


Acta Neuropathologica (Berlin).  2006 Feb 3; 1-7.

Coexistence of PSP and MSA: a case report and review of the literature.

Uchikado H, Delledonne A, Uitti R, Dickson DW

Department of Neuroscience, Neuropathology Laboratory, Mayo Clinic, 4500 San
Pablo Road, Jacksonville, FL, 32224, USA,  [email protected].

Progressive supranuclear palsy (PSP) is a neurodegenerative tauopathy characterized by Parkinsonism, vertical gaze palsy,  and early falls. The neuropathology is characterized by neurofibrillary tangles, tufted astrocytes, and coiled bodies, but some brains show other pathologic processes. To investigate the frequency of alpha-synuclein pathology in PSP with immunohistochemistry and to report the clinical and pathological features of a case of PSP with concomitant Multiple system atrophy (MSA) (PSP/MSA), 290 cases of PSP were screened for alpha-synuclein pathology with immunohistochemistry.  Double-labeling immunohistochemistry was performed on a case of PSP/MSA. Among the PSP cases screened for alpha-synuclein pathology, a single case of PSP/MSA  was detected. The patient was an 86-year-old woman with clinical features consistent with PSP. She had no documented dysautonomia or cerebellar signs, and imaging studies were not diagnostic of MSA. Pathological examination showed tau-immunoreactive neuronal and glial lesions consistent with PSP as well as alpha-synuclein immunoreactive glial cytoplasmic inclusions diagnostic of MSA. Double-immunolabeling studies showed no co-localization of alpha-synuclein and tau in most neuronal and glial lesions. Based upon the findings in this case, the neuropathologic changes of PSP and MSA are distinct and independent processes, but they can occasionally coexist.